
Single Buffered Histogram Sort – Page 1
©1999 Marion McCoskey, 2122 Elm Street, Chico, CA 95928, (530) 892-8403

I have discovered a general-purpose, single
buffered sorting algorithm that is faster than
Quick Sort and insensitive to the distribution
and ordering of the data to be sorted.

The Histogram Sort has other advantages in
addition to being faster and more stable:

1. A part of the data is completely sorted
before the entire sort is complete.
There are at least two ways this
property of the Histogram Sort can be
used to advantage.

a) One processor can pass completely
sorted data to another processor
while the rest of the data set
remains partially sorted.

b) A percentile-based subset of the
data can be sorted, and the rest left
partially sorted.  This can
result in a speed increase
of several hundred percent
over a complete sort.
Queries such as: “Who are
the top 10 salespeople of
XYZ Corporation?” or “List
20 people who make
median salaries at XYZ
Corporation.” Don’t require
that the entire record set be
sorted with the Histogram
Sort.

2. The integrated histograms
generated during the sort
process can also be used as
hash tables to speed up the
search part of a search and sort
procedure such as that required by
compilers, assemblers, interpreters, and
data base joins.

3. Unlike the Quick Sort the Histogram
Sort does not suffer performance
degradation on some orderings of data.
On systems without caching, the
Histogram Sort should take the same
time, no matter what the original order.
On systems with caching, the Histogram
Sort is slightly faster on data sets that
are more nearly sorted.

4. The histogram algorithm is amenable to
hardware acceleration.  The Quick Sort
has been known for decades.  Existing
hardware has been designed with the
idea that a processor that runs Quick
Sort faster has a competitive advantage.
The Histogram Sort allows re-thinking of
some of our basic assumptions about
the design of computer hardware

Figure One shows benchmarks for the
bubble sort, shell sort, Quick Sort, and
single buffered Histogram Sort on randomly-
ordered, zero-terminated strings.  The
strings are limited to the 26 English letters
and the 10 numerals and the sorts are all
case-insensitive.  This requires only a
histogram of 37 entries.  One is required for
the zero-termination of the strings.

Single Buffered Histogram Sort
by Marion McCoskey

Thursday, February 04, 1999

Lines Bubble Shell Quick Histogram
2900 40.7 3.3 0.0 0.0
5899 186.8 11.0 0.6 0.5

11799 790.4 29.7 1.1 0.0
23375 86.8 2.2 0.5
47036 390.0 4.9 1.7
93726 1357.7 12.1 3.9

187314 26.9 9.4
375290 59.4 20.4
749546 134.6 44.5

1499580 296.6 94.0
2999883 637.6 190.1

Figure One



Single Buffered Histogram Sort – Page 2
©1999 Marion McCoskey, 2122 Elm Street, Chico, CA 95928, (530) 892-8403

The data in Figure One shows the software
implementation of the Histogram Sort in a
slightly better light than strings with more
kinds of characters would, but many string
sorts are carried on with reduced character
sets, in essence wasting processor capacity
for characters that are not used.  In a
hardware accelerated version of the
Histogram Sort, histogram size would matter
far less, if at all.

Even though it was the world’s fastest
single-buffered sort on most data, the Quick
Sort has a major drawback which is
illustrated in the Figure Two.  In a naïve
implementation of the Quick Sort, worst
case performance occurs on already sorted
data.  Practical Quick Sorts work around this
problem by putting in a couple of lines which
make the worst case performance occur on
a data ordering that is unlikely to be
encountered, but any probability greater
than zero is troublesome in many situations
making the Quick Sort unsuitable for some
applications, despite its speed.

One day while writing a program for my
hobby of studying esoteric musical scales, I
needed a sort.  Following my usual practice,
I wrote a shell sort, but it was slow enough
that it gave a noticeable delay to the
program I was writing.  To speed up that
sort, I used a hashing method only
applicable to that particular situation.

It occurred to me that it would be wonderful
if there was a general purpose hash function
that could speed up all sorts, and that an
integrated histogram was just such a
function.

So I filed a patent on a sort method I called
the Histogram Sort.  I recently discovered
that the basic principle of the Histogram Sort
is already well known as the count sort, but
the way I applied that principle is apparently
novel, and better in many ways than the way
the count sort principle is traditionally
applied.

The basic count sort is very efficient, but for
practical problems it would require

prohibitively large histograms.  The
conventional method of
decomposing the algorithm is the
Radix Sort.  The Histogram Sort
differs from the Radix Sort in the
method used to apply the basic
count sort algorithm to large
problems.

The method I described in my
patent was a double-buffered
method, but I have recently
managed to make a slight variation
on the algorithm and execute the
sort in a single buffer.  For
intellectual property reasons, I am

unable to discuss details of the single
buffered version of my algorithm here, but I
will present some benchmarks.  I can also
say that the single-buffered version requires
a data structure other than the nested
histograms, but this data structure is small
and  it is not proportional to the size of  the
data to be sorted.  It turns out that the single
buffered method is actually a little faster
than the double buffered method.  I have
coded both variable-length string, and fixed -
length numerical versions of the single
buffered algorithm.  I am including a source
listing for a double-buffered numerical
Histogram Sort with this package.

The Histogram Sort makes first pass
counting data items that fall into a primary
region determined by  the most significant
bits of their keys.  Then the data items are
distributed according to these key bits, and
the histogram is saved.  In a string
implementation, all the strings that start with
“a” are put in one primary region, all the
strings that start with “b” are put in another
primary region, etc.  The first two elements
of the integrated histogram define the start
and end of the first region which would
contain all the strings starting with “a”, for
example.

Lines Qsort qSort
Worst
Case

Bubble
Sort

qSort
Worst/Best

Ratio
1000 0.0 1.6 3.3
2000 0.0 6.6 15.9
4000 0.6 30.7 77.4 51.2
8000 0.6 121.9 345.5 203.2

16000 1.6 426.8 1440.1 266.8
32000 3.3 1405.0 5922.6 425.8
64000 7.2 5159.1 716.5

Figure Two



Single Buffered Histogram Sort – Page 3
©1999 Marion McCoskey, 2122 Elm Street, Chico, CA 95928, (530) 892-8403

Next this first “a” region is divided into a
number of smaller secondary regions by a
process like that applied to the entire data
set, except the subsequently significant key
bits are used to create the second nested
histogram.  All the strings starting with “aa”
are put in one region, and the strings
starting with “ab” are put in another region.
This process is repeated using less
significant bits for each iteration until the
entire first primary region is sorted.  Then
the process is applied to subsequent
primary regions until all the data is sorted.

The Histogram Sort is easily adapted to
sorting arrays of pointers to zero terminated
strings.  Such an adaptation for the straight
Radix Sort would be very difficult.

My patent application describes a method of
hardware acceleration for the Histogram
Sort  that should make it by far the fastest
sorting algorithm on the planet.

Without hardware acceleration, the
Histogram Sort algorithm becomes less
efficient than other algorithms for sorting
small data sets which produce extremely
sparse histograms.  This is because it must
clear each histogram before it is used, and
then process all the entries in each
histogram.  Thus it may be clearing
histogram elements that are not useful in the
sorting process, and then checking all these
elements to see if they contain data.

A hardware accelerator would use special
histogram memory that could be cleared in a
single clock pulse.  This memory would have
all the clear inputs of the memory registers
connected to a single signal, thus nearly
eliminating the time it takes to clear a
histogram.

The hardware accelerator would also use a
priority encoder to go directly to a histogram
entry containing data, taking just a few gate
delays to skip over any number of histogram
entries that do not require processing.

There are other techniques that are already
well know such as zero overhead loops and
data pre-fetch that could also be applied to
reduce the Histogram Sort run time in a sort
coprocessor.

When implementing the Histogram Sort in
software the sparse histogram problem can
be ameliorated by simply sorting small
partitions with some other method.

You can get more information about the
Histogram Sort by sending e-mail to
mckyyy@aol.com.

Figure Three, Sort Benchmarks

0.0
200.0
400.0
600.0
800.0

1000.0
1200.0
1400.0
1600.0

Lines

S
ec

on
ds

Bubble
Shell
Quick
Histogram



Single Buffered Histogram Sort – Page 4
©1999 Marion McCoskey, 2122 Elm Street, Chico, CA 95928, (530) 892-8403

In his book “Algorithms”, Robert Sedgewick
presents two Radix Sorting methods; a
single buffered method he calls the “radix
exchange sort”, and a double-buffered
method he calls the “straight Radix Sort”.

The single-buffered
radix exchange sort
Sedgewick describes
bears little
relationship to the
Histogram Sort
described in my
patent.

As seen in Figure
Five, the speed
advantage of the
numerical Histogram
Sort is not as great
as with the string
sort.

Sorting is very important in computer
science.  It has been estimated that as much
as 25% of all computer time is spent in
sorting, with the proportion going up for
larger and more expensive machines doing
database work and compiling large

programs.

A general purpose
sorting algorithm that
is fast and insensitive
to the distribution
and ordering of the
data to be sorted.  Is
an important
development.

Serious consideration should be given to embedding  the Histogram Sort algorithm into a
hardware accelerator and making it an industry standard.  Not only would machine time be saved
in the sort process, but programmer/analyst time would be saved in the code generation process.

Two
Buffers

One
Buffer

Lines

Histogram Sort

Quick
Sort

125000 1.7 1.1 1.6
250000 2.8 1.6 3.3
500000 4.9 4.4 6.6

1000000 11.6 9.4 14.3
2000000 24.2 21.5 30.7
4000000 48.9 45.6 67.5
8000000 96.1 78.0 140.6

Figure Five

Comparison between the Straight Radix Sort and the Histogram Sort

The Straight Radix Sort is described in the book “Algorithms”  by Robert Sedgewick

Radix Sort Histogram Sort Comment

Double
buffered only

Single or double
buffered

Double buffering requires twice as much RAM.  If the data
set is large enough to require disk access, this can be a
major performance problem.

Does not
partition data

Partitions data All bits of all data items have to be processed if there is no
partitioning.  With partitioning different sorting strategies
can be applied to different partitions according to their
size, which is known in advance.

Uses only one
histogram

Uses nested
histograms

Nested histograms require more storage, but the
requirement is very small compared to the size of the data
to be sorted.

Does most
significant bits
first

Does least
significant bits first

Doing the least significant bits first means that the data
remains completely unsorted until the last pass.  Doing the
most significant bits first means that it is only necessary to
process enough data bits in any particular item to
distinguish it from all the other items in the data set, and
completely sorted data becomes available before the
entire sort is complete.

Extremely
difficult to apply
to variable
length data.

Easily applied to
variable length
data.

Starting with the least significant bits makes applying the
straight Radix Sort to variable length strings extremely
difficult.

Figure Four


